Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29.838
1.
World J Microbiol Biotechnol ; 40(5): 158, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592601

Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of 'critical priority group' framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging 'microbial resistance.' Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420-440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10-50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of - 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.


Ascomycota , Candida albicans , Metal Nanoparticles , Animals , Mice , Fluconazole/pharmacology , Silver/pharmacology , Candida
2.
Mar Drugs ; 22(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38667806

Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 µg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 µg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.


Anti-Bacterial Agents , Lactams, Macrocyclic , Microbial Sensitivity Tests , Multigene Family , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Humans , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Polyenes/pharmacology , Polyenes/isolation & purification , Polyenes/chemistry , Candida albicans/drug effects , Cell Line, Tumor , Antarctic Regions , Animals , Porifera/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
3.
Dent Med Probl ; 61(2): 217-224, 2024.
Article En | MEDLINE | ID: mdl-38668709

BACKGROUND: Sleep quality has a significant impact on a child's health and is linked to oral and systemic diseases. It affects the circadian rhythm, which plays a crucial role in regulating the balance of the endocrine and hormonal systems. Current research has focused on exploring its role in the development of caries, which is influenced by inherent oral factors such as the composition of the oral microbiome and pH levels. OBJECTIVES: This study aimed to investigate the relationship between bacterial population, pH, and buffering properties of saliva and sleep patterns in 8- to 12-year-old children. MATERIAL AND METHODS: This cross-sectional study was conducted on 85 elementary school children aged 8-12 years. After obtaining written consent, non-stimulating saliva samples were collected using the spitting method. The participants' sleep pattern information was obtained with the use of the Persian version of the Children's Sleep Habits Questionnaire (CSHQ). Based on the results of the CSHQ, the participants were divided into 2 groups: those with appropriate sleep patterns; and those with inappropriate sleep patterns. The study compared the bacterial population of Streptococcus mutans, Lactobacillus spp. and Candida albicans, as well as the buffering capacity and pH of the saliva between the 2 groups. The statistical analysis employed the χ2 test, the independent samples t-test and Spearman's correlation. RESULTS: The group with inappropriate sleep patterns had significantly lower pH and buffering capacity (p < 0.001) and significantly higher colony counts of Lactobacillus and S. mutans (p < 0.001 and p = 0.012, respectively). There was no association between C. albicans and sleep patterns (p = 0.121). CONCLUSIONS: Inappropriate sleep patterns increase the population of caries-causing bacteria and reduce salivary pH and buffering capacity. This can be a significant factor in the development of dental caries in children aged 8-12 years.


Dental Caries , Saliva , Humans , Child , Saliva/microbiology , Saliva/chemistry , Hydrogen-Ion Concentration , Cross-Sectional Studies , Female , Male , Dental Caries/microbiology , Streptococcus mutans/isolation & purification , Candida albicans/isolation & purification , Buffers , Lactobacillus/isolation & purification , Sleep/physiology
4.
J Mol Model ; 30(5): 151, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668860

CONTEXT: The controlled slow evaporation process conducted at room temperature has produced a novel hybrid material denoted as (2-hydroxyethyl) trimethylammonium dihydrogen phosphate [2-HDETDHP] (C5H14NO+, H2PO4-), synthesized through the solution growth method. X-ray crystallography analysis reveals a triclinic structure with a filling rate of P and a Z value of 2. This hybrid material displays noteworthy absorption characteristics in the middle and far ultraviolet regions. UV-visible spectroscopy further establishes its transparency in the visible and near-visible ultraviolet domains. FT-IR spectroscopy examines various vibration modes, elucidating their relationships with the functional groups within the structure. Two- and three-dimensional fingerprint maps, coupled with three-dimensional crystal structures through Hirshfeld Surface Analysis, unveil the dominance of O•••H and H•••H interactions in the structure, comprising 49.40% and 50.40%, respectively. Fingerprint plots derived from the Hirshfeld surface assess the percentages of hydrogen bonding interactions, with 80.6% attributed to a fragment patch. The experiment of antimicrobial efficacy of a synthesized product, conducted in triplicate, demonstrated the synthesized product's potential antimicrobial activity. METHODS: Hirshfeld surfaces are employed to investigate intermolecular hydrogen bonding, specifically within single phosphate groups. The molecular structure of 2-HDETDHP was refined using single-crystal X-ray analysis, while its optical characteristics were examined through UV-visible spectroscopy. FT-IR spectroscopy is employed for the assignment of molecular vibrations of functional groups in the affined structure. Quantum calculations were executed with the GAUSSIAN 09 software package at B3LYP/6-311G level of theory, to optimize the molecular geometries. The antimicrobial efficacy of a synthesized product was evaluated using the disc diffusion method against antibiotic-resistant Candida albicans, Candida tropicalis, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Microorganisms were cultured on nutrient agar, and inhibition zones were measured after incubation, with streptomycin and amphotericin as positive controls.


Phosphates , Phosphates/chemistry , Hydrogen Bonding , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests , Crystallography, X-Ray , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis
5.
Clin Lab ; 70(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38623664

BACKGROUND: Despite the advanced laboratory technologies available today, blood culture is the gold standard method in the diagnosis of bloodstream infections. Automated blood culture devices give blood culture results for laboratories approximately in 2 - 3 days up to 7 days. Moreover, some microorganisms like nonreproducible bacteria, fungi or viruses cannot be produced in culture. Among all samples taken for blood culture on suspicion of infection approximately 10% are determined as positive whereas the false positive rate due to contamination is 5%. Especially in life-threatening severe conditions such as sepsis early diagnosis and prompt treatment are crucial. Based on this the aim of this study is to investigate complete blood count parameters as potential early markers in Escherichia coli, Staphylococcus aureus and Candida albicans bloodstream infections using an ex vivo whole blood model. METHODS: Blood samples collected from healthy donors (n = 10) were treated with suspensions containing a certain concentration of microorganisms (107 CFU/mL for both E. coli ATCC 25922 and S. aureus ATCC 29213, 106 CFU/mL for C. albicans ATCC 14053). After bacteremia and candidemia were induced, complete blood count parameters were analyzed hourly in the samples until the end of the 4th hour with a Mindray BC-6800 hematology analyzer. Statistical analysis was performed by Tukey-Kramer post-hoc multiple comparison test and statistical significance was accepted as p < 0.05. RESULTS: When platelet derived parameter baseline values were compared to hourly values in E. coli and S. aureus induced whole blood samples, it was found that the decrease in PLT, P-LCC and the increase in IPF% was significant from the first hour whereas the increase in IMG% was found to be significant only from the 3rd hour onward. In the experiments with C. albicans, it was observed that the increase in IPF% and IMG% was significant from the 2nd and 3rd hour onward, respectively. There was no relationship between MPV, P-LCR, and NLR baseline and hourly results in any microorganism induced model. CONCLUSIONS: IPF% can guide clinicians in the early diagnosis and management of treatment of infections caused by S. aureus, E. coli, and C. albicans.


Candidemia , Candidiasis , Humans , Escherichia coli , Staphylococcus aureus , Candida albicans , Candidiasis/diagnosis , Candidiasis/microbiology , Candidemia/microbiology , Blood Cell Count
6.
J Infect Dev Ctries ; 18(3): 473-479, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38635625

INTRODUCTION: Candida albicans and Aspergillus fumigatus are two important agents of Healthcare-associated infections. This study aimed to evaluate the antifungal activity of ozone (O3) gas produced by two commercial devices against cultures of these two species. METHODOLOGY: Sterile plastic plates were inoculated with C. albicans and A. fumigatus and placed on a countertop at three distances (30 cm, 1 m, and 2 m) and three positions in relation to the wall (near, middle, and away), considering the source of O3. Plates were exposed to O3 for one hour and incubated. After incubation, the counting of colony-forming units was performed. As a control, an inoculated plate was incubated, without being exposed to O3. Tests were carried out with two different devices (namely, Mod.I and Mod.II), with the air conditioner on and off, in triplicate. RESULTS: Both devices showed antifungal activity. Mod. I presented better results, due to a higher flow rate. The best activity was on plates at 30 cm, middle position. Contrarily, on plates at 2m, near the wall, the inhibition activity was lower. The best results were obtained with the air conditioner off. Candida albicans was more sensitive to O3 than A. fumigatus. CONCLUSIONS: This method of decontamination by O3 gas shows potential due to its fast and easy execution. The establishment of new protocols for hygiene and hospital disinfection using this approach should be considered, which may reduce environmental contamination by fungi and, consequently, the burden of fungal infections.


Candida albicans , Mycoses , Aspergillus fumigatus , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
7.
J Agric Food Chem ; 72(15): 8521-8535, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38565849

Thirty-five norsesquiterpenoids were isolated from the fermentation broth of Streptomyces microflavus from the forest soil of Ailaoshan in China. The structures of new compounds (1-5, 10-26) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra, as well as Mosher's reagent derivatives method. Norsesquiterpenoids showed different levels of antifungal activity with MIC80 values ranging from 25 to 200 µg/mL against Candida albicans, Candida parapsilosis, and Cryptococcus neoformans. The combining isolated norsesquiterpenoids with amphotericin B resulted in a synergistic interaction against test yeast-like fungi with a fractional inhibitory concentration index < 0.5. Compound 33 significantly inhibited biofilm formation and destroyed the preformed biofilm of fungi. Moreover, 33 downregulated the expression of adhesion-related genes HWP1, ALS1, ALS3, ECE1, EAP1, and BCR1 to inhibit the adhesion of C. albicans. Findings from the current study highlight the potential usage of norsesquiterpenoids from soil-derived Streptomyces for antifungal leads discovery.


Antifungal Agents , Streptomyces , Antifungal Agents/pharmacology , Amphotericin B/pharmacology , Candida albicans , Streptomyces/genetics , Biofilms , Microbial Sensitivity Tests
8.
Eur Rev Med Pharmacol Sci ; 28(6): 2558-2568, 2024 Mar.
Article En | MEDLINE | ID: mdl-38567615

OBJECTIVE: The frequency and mortality of candidemia remain important. Non-albicans Candida species such as C. auris are increasing. PATIENTS AND METHODS: A retrospective review of adult patients diagnosed with bloodstream infection due to Candida species in the 17 months between July 1, 2020, and December 1, 2021, was performed. Yeast colonies grown in culture were identified by matrix-assisted laser desorption/ionization time-of-flight. Antifungal susceptibility tests of Candida strains were performed with Sensititre YeastOne (TREK Diagnostic Systems Inc., Westlake, Ohio) kits, and minimum inhibitory concentration values were evaluated according to the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints. RESULTS: In total, 217 patients (mean age 64.9±15.7 years) were included. C. albicans was the most common fungus (detected in 82 patients; 37.8%), followed by C. parapsilosis (17.1%), C. glabrata (15.2%), C. tropicalis (15.2%), and C. auris (9%). Candidemia developed in 175 (81.4%) of the cases during their intensive care unit stay. Fluconazole (41.0%) and caspofungin (36.4%) were the two most frequently used antifungal agents in antifungal therapy. There were 114 (52.3%) deaths in the study group. Mortality rates were found to be lower in patients infected with C. parapsilosis or C. auris. Age and previous COVID-19 infection were other important risk factors. When the 217 Candida spp. were examined, resistance and intermediate susceptibility results were higher when EUCAST criteria were used. While the two methods were found to be fully compatible only for fluconazole, a partial agreement was also observed for voriconazole. CONCLUSIONS: As our study observed, the COVID-19 pandemic brought increasing numbers of immunosuppressed patients, widespread use of antibacterials, and central venous catheters, increasing the frequency and mortality of candidemia cases. All health institutions should be prepared for the diagnosis and treatment of candidemia. In addition, C. auris, the frequency of which has increased in recent years, is a new factor that should be considered in candidemia cases.


COVID-19 , Candidemia , Adult , Humans , Middle Aged , Aged , Aged, 80 and over , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidemia/drug therapy , Candidemia/epidemiology , Candidemia/microbiology , Fluconazole/pharmacology , Fluconazole/therapeutic use , Pandemics , Candida , Candida albicans , Candida glabrata , Microbial Sensitivity Tests , Hospitals, Urban
9.
Sci Rep ; 14(1): 7926, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575619

Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5-15% wt/vol, honey like solution, 678-834 mPa s), thermal treatment for 2-4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300-400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.


Acrylic Resins , Anti-Infective Agents , Nanofibers , Escherichia coli , Staphylococcus aureus , Industrial Development , Candida albicans , Carbon
10.
Methods Enzymol ; 696: 155-174, 2024.
Article En | MEDLINE | ID: mdl-38658078

The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.


Biofilms , Candida albicans , Fluorides , Streptococcus gordonii , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Streptococcus mutans/drug effects , Streptococcus mutans/genetics , Streptococcus mutans/physiology , Streptococcus mutans/metabolism , Streptococcus mutans/growth & development , Fluorides/pharmacology , Fluorides/metabolism , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/physiology , Streptococcus gordonii/drug effects , Streptococcus gordonii/genetics , Streptococcus gordonii/physiology , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Dental Caries/microbiology
11.
Methods Enzymol ; 696: 3-24, 2024.
Article En | MEDLINE | ID: mdl-38658085

Tight regulation of molecules moving through the cell membrane is particularly important for free-living microorganisms because of their small cell volumes and frequent changes in the chemical composition of the extracellular environment. This is true for nutrients, but even more so for toxic molecules. Traditionally, the transport of these diverse molecules in microorganisms has been studied on cell populations rather than on single cells, mainly because of technical difficulties. The goal of this chapter is to make available a detailed method to prepare yeast spheroplasts to study the movement of fluoride ions across the plasma membrane of single cells by the patch-clamp technique. In this procedure, three steps are critical to achieve high resistance (GΩ) seals between the membrane and the glass electrode: (1) appropriate removal of the cell wall by enzymatic treatment; (2) balance between the osmotic strength of sealing solutions and cell membrane turgor; and (3) meticulous morphological inspection of spheroplasts suitable for gigaseal formation. We show now that this method, originally developed for Saccharomyces cerevisiae, can also be applied to Candida albicans, an opportunistic human pathogen.


Candida albicans , Fluorides , Patch-Clamp Techniques , Saccharomyces cerevisiae , Spheroplasts , Saccharomyces cerevisiae/metabolism , Candida albicans/metabolism , Candida albicans/physiology , Fluorides/chemistry , Patch-Clamp Techniques/methods , Spheroplasts/metabolism , Cell Membrane/metabolism , Ion Channels/metabolism
12.
BMC Microbiol ; 24(1): 138, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658823

BACKGROUND: Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS: Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS: We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION: COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.


Bacteria , COVID-19 , Candida albicans , Microbiota , Respiratory System , SARS-CoV-2 , Sputum , Humans , COVID-19/microbiology , COVID-19/virology , Microbiota/genetics , Male , Candida albicans/isolation & purification , Candida albicans/genetics , Female , Sputum/microbiology , Sputum/virology , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Respiratory System/microbiology , Respiratory System/virology , Aged , RNA, Ribosomal, 16S/genetics , Adult , Coinfection/microbiology , Coinfection/virology
13.
Biosci Rep ; 44(4)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563086

The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.


Amphotericin B , Candida albicans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Peptides/pharmacology , Cell Membrane , Cell Wall , Microbial Sensitivity Tests
14.
Proc Natl Acad Sci U S A ; 121(17): e2315926121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625945

RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.


Candida albicans , Gene Editing , Humans , Candida albicans/genetics , RNA Interference , Saccharomyces cerevisiae/metabolism , Genomic Instability
15.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612381

Candida albicans is a prevalent fungal pathogen that displays antibiotic resistance. The polyene antifungal amphotericin B (AmB) has been the gold standard because of its broad antifungal spectra, and its liposomal formulation, AmBisome, has been used widely and clinically in treating fungal infections. Herein, we explored enhancing the antifungal activity of AmBisome by integrating a small chitin-binding domain (LysM) of chitinase A derived from Pteris ryukyuensis. LysM conjugated with a lipid (LysM-lipid) was initially prepared through microbial transglutaminase (MTG)-mediated peptide tag-specific conjugation of LysM with a lipid-peptide substrate. The AmBisome formulation modified with LysM-lipid conjugates had a size distribution that was comparable to the native liposomes but an increased zeta potential, indicating that LysM-lipid conjugates were anchored to AmBisome. LysM-lipid-modified AmBisome exhibited long-term stability at 4 °C while retaining the capacity to bind chitin. Nevertheless, the antifungal efficacy of LysM-lipid-modified AmBisome against C. albicans was modest. We then redesigned a new LysM-lipid conjugate by introducing a peptide linker containing a thrombin digestion (TD) site at the C-terminus of LysM (LysM-TD linker-lipid), thereby facilitating the liberation of the LysM domain from AmBisome upon the addition of thrombin. This new AmBisome formulation anchored with LysM-TD linker-lipid exhibited superior performance in suppressing C. albicans growth in the presence of thrombin compared with the LysM-lipid formulation. These results provide a platform to design stimuli-responsive AmBisome formulations that respond to external environments and thus advance the treatment of pathogenic fungi infections.


Amphotericin B , Antifungal Agents , Peptide Hydrolases , Antifungal Agents/pharmacology , Liposomes , Thrombin , Candida albicans , Chitin , Peptides/pharmacology , Lipids
16.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612411

Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.


Candida albicans , Oleanolic Acid/analogs & derivatives , Saponins , Saponins/pharmacology , Biofilms , Tea
17.
Front Cell Infect Microbiol ; 14: 1389020, 2024.
Article En | MEDLINE | ID: mdl-38601736

Introduction: Invasive candidiasis is a global public health problem as it poses a significant threat in hospital-settings. The aim of this study was to evaluate C14R, an analog derived from peptide BP100, as a potential antimicrobial peptide against the prevalent opportunistic yeast Candida albicans and the emergent multidrug-resistant yeast Candida auris. Methods: Antifungal susceptibility testing of C14R against 99 C. albicans and 105 C. auris clinical isolates from Colombia, was determined by broth microdilution. Fluconazole was used as a control antifungal. The synergy between C14R and fluconazole was assessed in resistant isolates. Assays against fungal biofilm and growth curves were also carried out. Morphological alterations of yeast cell surface were evaluated by scanning electron microscopy. A permeability assay verified the pore-forming ability of C14R. Results: C. albicans and C. auris isolates had a geometric mean MIC against C14R of 4.42 µg/ml and 5.34 µg/ml, respectively. Notably, none of the isolates of any species exhibited growth at the highest evaluated peptide concentration (200 µg/ml). Synergistic effects were observed when combining the peptide and fluconazole. C14R affects biofilm and growth of C. albicans and C. auris. Cell membrane disruptions were observed in both species after treatment with the peptide. It was confirmed that C14R form pores in C. albicans' membrane. Discussion: C14R has a potent antifungal activity against a large set of clinical isolates of both C. albicans and C. auris, showing its capacity to disrupt Candida membranes. This antifungal activity remains consistent across isolates regardless of their clinical source. Furthermore, the absence of correlation between MICs to C14R and resistance to fluconazole indicates the peptide's potential effectiveness against fluconazole-resistant strains. Our results suggest the potential of C14R, a pore-forming peptide, as a treatment option for fungal infections, such as invasive candidiasis, including fluconazole and amphotericin B -resistant strains.


Antifungal Agents , Candidiasis, Invasive , Candidiasis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candida auris , Peptides/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Fungal
18.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Article En | MEDLINE | ID: mdl-38603707

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Biofilms , Candida albicans , Cystic Fibrosis , Fungal Proteins , Transcription Factors , Cystic Fibrosis/microbiology , Candida albicans/genetics , Candida albicans/metabolism , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Biofilms/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gain of Function Mutation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Lung/microbiology , Candidiasis/microbiology , Adaptation, Physiological
19.
BMC Res Notes ; 17(1): 104, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605312

BACKGROUND: Candida, a common oral microbiota, can cause opportunistic fungal infections. With rising Candida infections and limited effective antifungals, new treatments are needed. This study investigates carvacrol essential oil's effect on oral candidiasis, alone and with nystatin, compared to nystatin alone. MATERIALS AND METHODS: In this study, oral samples were collected from dental clinic patients, especially denture users. The presence of Candida was confirmed and cultured from these samples. Candidiasis was detected by observing Candida colonies. Drug sensitivity was tested on 100 positive samples. The minimum concentration of inhibition and lethality of each isolate was evaluated using nystatin and carvacrol. The results were compared using two-way analysis of variance. Finally, the minimum inhibitory concentration (MIC) of nystatin and carvacrol was calculated individually and in combination. RESULTS: The present study found that Candida albicans and non-albicans species were equally prevalent. Carvacrol showed significant biological activity against all Candida species, with an average MTT of 50.01%. The average MIC value of carvacrol was 24.96 µg/ml, indicating its potential to inhibit Candida growth. The mean Minimum Fungicidal Concentration (MFC) value of carvacrol was 23.48 µg/ml, suggesting its effectiveness in killing the fungi. CONCLUSION: The study's findings reveal that the MIC of carvacrol was significantly lower than that of nystatin and the combination of nystatin and carvacrol. This suggests that carvacrol holds potential as an effective herbal remedy for candidiasis.


Candidiasis, Oral , Candidiasis , Cymenes , Humans , Nystatin/pharmacology , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Candida albicans , Candidiasis/drug therapy , Microbial Sensitivity Tests
20.
J Appl Oral Sci ; 32: e20230326, 2024.
Article En | MEDLINE | ID: mdl-38656049

OBJECTIVE: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). METHODOLOGY: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). RESULTS: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. CONCLUSION: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.


Acrylic Resins , Bacterial Adhesion , Biofilms , Candida albicans , Denture Bases , Materials Testing , Microscopy, Confocal , Microscopy, Electron, Scanning , Printing, Three-Dimensional , Staphylococcus aureus , Streptococcus mutans , Surface Properties , Wettability , Streptococcus mutans/physiology , Staphylococcus aureus/physiology , Candida albicans/physiology , Denture Bases/microbiology , Acrylic Resins/chemistry , Analysis of Variance , Reproducibility of Results , Denture, Complete/microbiology , Reference Values , Colony Count, Microbial , Linear Models
...